[1] D. Ailincai, S. Cibotaru, A. Anisiei, et al., Mesoporous chitosan nanofibers loaded with norfloxacin and coated with phenylboronic acid perform as bioabsorbable active dressings to accelerate the healing of burn wounds, Carbohydr. Polym., 318, 15, doi:10.1016/j.carbpol.2023.121135, (2023).
[2] D. Ailincai, I. A. T. Moleavin, A. Sarghi, et al., New Hydrogels Nanocomposites Based on Chitosan, 2-Formylphenylboronic Acid, and ZnO Nanoparticles as Promising Disinfectants for Duodenoscopes Reprocessing, Polymers, 15(12), 18, doi:10.3390/polym15122669, (2023).
[3] D. Ailincai, S. Morariu, I. Rosca, A. I. Sandu and L. Marin, Drug delivery based on a supramolecular chemistry approach by using chitosan hydrogels, Int. J. Biol. Macromol., 248, 17, doi:10.1016/j.ijbiomac.2023.125800, (2023).
[4] D. Ailincai and I. Rosca, New Hydrogels and Formulations Based on Piperonyl-Imino-Chitosan Derivatives, Polymers, 15(3), 15, doi:10.3390/polym15030753, (2023).
[5] B. I. Andreica, A. Anisiei, I. Rosca and L. Marin, Quaternized chitosan-based nanofibers with strong antibacterial and antioxidant activity designed as ecological active food packaging, Food Packaging Shelf Life, 39, 17, doi:10.1016/j.fpsl.2023.101157, (2023).
[6] B. I. Andreica, A. Anisiei, I. Rosca, et al., Quaternized chitosan/chitosan nanofibrous mats: An approach toward bioactive materials for tissue engineering and regenerative medicine, Carbohydr. Polym., 302, 14, doi:10.1016/j.carbpol.2022.120431, (2023).
[7] A. Anisiei, B. I. Andreica, L. Mititelu-Tartau, et al., Biodegradable trimethyl chitosan nanofiber mats by electrospinning as bioabsorbable dressings for wound closure and healing, Int. J. Biol. Macromol., 249, 15, doi:10.1016/j.ijbiomac.2023.126056, (2023).
[8] A. Bejan and L. Marin, Outstanding Sorption of Copper (II) Ions on Porous Phenothiazine-Imine-Chitosan Materials, Gels, 9(2), 19, doi:10.3390/gels9020134, (2023).
[9] S. Cibotaru, A. Nicolescu and L. Marin, Dynamic PEGylated phenothiazine imines; synthesis, photophysical behavior and reversible luminescence switching in response to external stimuli, J. Photochem. Photobiol. A-Chem., 435, 15, doi:10.1016/j.jphotochem.2022.114282, (2023).
[10] S. Cibotaru, A. I. Sandu, A. Nicolescu and L. Marin, Antitumor Activity of PEGylated and TEGylated Phenothiazine Derivatives: Structure-Activity Relationship, Int. J. Mol. Sci., 24(6), 21, doi:10.3390/ijms24065449, (2023).
[11] O. Dumbrava, A. Filimon and L. Marin, Tailoring properties and applications of polysulfone membranes by chemical modification: Structure-properties-applications relationship, Eur. Polym. J., 196, 34, doi:10.1016/j.eurpolymj.2023.112316, (2023).
[12] M. M. Iftime, G. L. Ailiesei, S. Shova, et al., New betulin imine derivatives with antioxidant and selective antitumor activity, New J. Chem., 47(35), 16551-16563, doi:10.1039/d3nj02738d, (2023).
[13] K. Q. Liu, L. Marin and X. J. Cheng, Water-soluble ?-cyclodextrin based turn-on amplifying fluorescent probes for sensitive and selective detection of Hg2+/Hg+ ions, Sens. Actuator B-Chem., 377, 12, doi:10.1016/j.snb.2022.133060, (2023).
[14] L. Marin, B. I. Andreica, A. Anisiei, et al., Quaternized chitosan (nano)fibers: A journey from preparation to high performance applications, Int. J. Biol. Macromol., 242, 24, doi:10.1016/j.ijbiomac.2023.125136, (2023).
[15] S. Morariu, C. E. Brunchi, M. Honciuc and M. M. Iftime, Development of Hybrid Materials Based on Chitosan, Poly(Ethylene Glycol) and Laponite® RD: Effect of Clay Concentration, Polymers, 15(4), 18, doi:10.3390/polym15040841, (2023).
[16] N. N. Patlataya, I. N. Bolshakov, V. A. Khorzhevskii, et al., Morphological Reconstruction of a Critical-Sized Bone Defect in the Maxillofacial Region Using Modified Chitosan in Rats with Sub-Compensated Type I Diabetes Mellitus, Polymers, 15(21), 27, doi:10.3390/polym15214337, (2023).
[17] A. M. Dobos, A. Bargan, S. Dunca, C. M. Rîmbu and A. Filimon, Cellulose acetate/silica composites: Physicochemical and biological characterization, J. Mech. Behav. Biomed. Mater., 144, 12, doi:10.1016/j.jmbbm.2023.106002, (2023).
[18] A. M. Dobos, A. Popa, C. M. Rimbu and A. Filimon, Structure-Bioactivity Relationship of the Functionalized Polysulfone with Triethylphosphonium Pendant Groups: Perspective for Biomedical Applications, Polymers, 15(4), 20, doi:10.3390/polym15040877, (2023).
[19] A. Filimon, M. D. Onofrei, A. Bargan, I. Stoica and S. Dunca, Bioactive Materials Based on Hydroxypropyl Methylcellulose and Silver Nanoparticles: Structural-Morphological Characterization and Antimicrobial Testing, Polymers, 15(7), 21, doi:10.3390/polym15071625, (2023).
[20] S. P. Gherman, G. Biliuta, A. Bele, et al., Biomaterials Based on Chitosan and Polyvinyl Alcohol as a Drug Delivery System with Wound-Healing Effects, Gels, 9(2), 18, doi:10.3390/gels9020122, (2023).
[21] V. Gutsanu, O. Petuhov, A. M. Ipate, G. Lisa and M. Botnaru, Metal/Carbon Composites: Precursors for Obtaining New Sorbents-Catalysts, Colloid J., 85(6), 871-888, doi:10.1134/s1061933x23600537, (2023).
[22] M. Homocianu, D. Serbezeanu and V. B. Tachita, Solvatochromism, Acidochromism and Photochromism of the 2,6-Bis(4-hydroxybenzylidene) Cyclohexanone Derivative, Int. J. Mol. Sci., 24(6), 12, doi:10.3390/ijms24065286, (2023).
[23] C. Lungoci, C. M. Rimbu, I. Motrescu, et al., Evaluation of the Antibacterial Properties of Polyvinyl Alcohol-Pullulan Scaffolds Loaded with 'Nepeta racemosa' Lam. Essential Oil and Perspectives for Possible Applications, Plants-Basel, 12(4), 17, doi:10.3390/plants12040898, (2023).
[24] D. Serbezeanu, C. Hamciuc, T. Vlad-Bubulac, et al., Flame-Resistant Poly(vinyl alcohol) Composites with Improved Ionic Conductivity, Membranes, 13(7), 18, doi:10.3390/membranes13070636, (2023).
[25] D. Serbezeanu, M. M. Iftime, G. L. Ailiesei, et al., Evaluation of Poly(vinyl alcohol)-Xanthan Gum Hydrogels Loaded with Neomycin Sulfate as Systems for Drug Delivery, Gels, 9(8), 18, doi:10.3390/gels9080655, (2023).
[26] D. Serbezeanu, T. Vlad-Bubulac, A. M. Macsim and V. Balan, Design and Synthesis of Amphiphilic Graft Polyphosphazene Micelles for Docetaxel Delivery, Pharmaceutics, 15(5), 14, doi:10.3390/pharmaceutics15051564, (2023).
[27] T. Vlad-Bubulac, C. Hamciuc, D. Serbezeanu, et al., Simultaneous Enhancement of Flame Resistance and Antimicrobial Activity in Epoxy Nanocomposites Containing Phosphorus and Silver-Based Additives, Molecules, 28(15), 19, doi:10.3390/molecules28155650, (2023).
[28] T. Vlad-Bubulac, C. Hamciuc, D. Serbezeanu, et al., Organophosphorus Reinforced Poly(vinyl alcohol) Nanocomposites Doped with Silver-Loaded Zeolite L Nanoparticles as Sustainable Materials for Packaging Applications, Polymers, 15(11), 20, doi:10.3390/polym15112573, (2023).
|